Skip to content

Bodo SQL Quick Start

This quickstart guide will walk you through the process of running a simple SQL query using Bodo on your local machine.

Prerequisites

Install Bodo to get started (e.g., pip install bodo or conda install bodo -c bodo.ai -c conda-forge). Additionally, install bodosql with pip or conda:

pip install bodosql
conda install -c bodo.ai -c conda-forge bodosql

Generate Sample Data

Let's start by creating a Parquet file with some sample data. The following Python code creates a Parquet file with two columns A and B and 20 million rows. The column A contains values from 0 to 29, and the column B contains values from 0 to 19,999,999.

import pandas as pd
import numpy as np
import bodo
import bodosql
import time

NUM_GROUPS = 30
NUM_ROWS = 20_000_000
df = pd.DataFrame({
    "A": np.arange(NUM_ROWS) % NUM_GROUPS,
    "B": np.arange(NUM_ROWS)
})
df.to_parquet("my_data.pq")

Create a local in-memory SQL Table

Now let's create a local in-memory SQL table from the Parquet file. We can use the TablePATH API to register the table into our BodoSQLContext.

bc = bodosql.BodoSQLContext(
    {
        "TABLE1": bodosql.TablePath("my_data.pq", "parquet")
    }
)

Write a SQL Query

Now we can write a SQL query to compute the sum of column A for all rows where B is greater than 4. We encapsulate the statement within a @bodo.jit decorated function to indicate that we want to compile the code using Bodo. Let's also add a timer to measure the execution time.

@bodo.jit(cache=True)
def query(bc):
    t1 = time.time()
    df1 = bc.sql("SELECT SUM(A) as SUM_OF_COLUMN_A FROM TABLE1 WHERE B > 4")
    print("Execution time:", time.time() - t1)
    return df1

result = query(bc)
print(result)

Running your code

Bringing it all together, the complete code looks like this:

import pandas as pd
import numpy as np
import bodo
import bodosql
import time

NUM_GROUPS = 30
NUM_ROWS = 20_000_000

df = pd.DataFrame({
    "A": np.arange(NUM_ROWS) % NUM_GROUPS,
    "B": np.arange(NUM_ROWS)
})

df.to_parquet("my_data.pq")

bc = bodosql.BodoSQLContext(
    {
        "TABLE1": bodosql.TablePath("my_data.pq", "parquet")
    }
)

@bodo.jit(cache=True)
def query(bc):
    t1 = time.time()
    df1 = bc.sql("SELECT SUM(A) as SUM_OF_COLUMN_A FROM TABLE1 WHERE B > 4")
    print("Execution time:", time.time() - t1)
    return df1

result = query(bc)
print(result)

To run the code, save it to a file, e.g. test_bodo_sql.py, and run the following command in your terminal:

python test_bodo_sql.py

By default Bodo will use all available cores. To set a limit on the number of processes spawned, set the environment variable BODO_NUM_WORKERS. Note that the first time you run this code, it may take a few seconds to compile the code. Next time you run the code, it will execute much faster. Check the SQL API Reference for the full list of supported SQL operations.