Skip to content

Compilation Tips and Troubleshooting

What Code to JIT Compile

The general recommendation is to use Bodo JIT compilation only for code that is data and/or compute intensive (e.g. Pandas code on large dataframes). In other words:

  • Only use Bodo for data processing and analytics code such as Pandas, Numpy, and Scikit-Learn (see Bodo API reference for analytics APIs with JIT support).
  • Refactor code that sets up infrastructure or performs initializations out of JIT functions.

This reduces the risk of encountering unsupported features and also reduces compilation time. For example, the program below finds the input file name in regular Python, and uses Bodo JIT only for data load and processing:

import bodo
import pandas as pd
import os

def get_filename():
    if os.path.exists("input.parquet"):
        return "input.parquet"
    if "INPUT_FILE" in os.environ:
        return os.environ["INPUT_FILE"]
    raise Exception("Input file name not found")

@bodo.jit
def f(fname):
    df = pd.read_parquet(fname)
    print(df.sum())

fname = get_filename()
f(fname)

This recommendation is similar to Numba's What to compile.

Compilation Errors

First of all, let us understand why the code may fail to compile. There are three main kinds of issues:

  1. Some API is used that is not supported in Bodo JIT yet (see Bodo API Reference).
  2. Some Python construct or data structure is used that cannot be JIT compiled (see Unsupported Python APIs).
  3. The code has type stability issues (see type stability).

Below are some examples of the type of errors you may see due to these issues.

Unsupported Functions or Methods

If a JIT function uses an unsupported function or method (e.g. in Pandas APIs), Bodo raises BodoError explaining that the method is not supported yet:

BodoError: <method> not supported yet

For example:

>>> @bodo.jit
... def f(df):
...     return df.swapaxes(0, 1)
...
>>> f(df)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/opt/miniconda3/envs/Bodo/lib/python3.12/site-packages/bodo/numba_compat.py", line 874, in _compile_for_args
    raise error
bodo.utils.typing.BodoError: DataFrame.swapaxes() not supported yet

Unsupported Attributes

Attempting to access an unsupported attribute in Bodo JIT functions will result in a BodoError as follows:

BodoError: <attribute> not supported yet

For example:

>>> @bodo.jit
... def f(df):
...     return df.flags
...
>>> f(df)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/opt/miniconda3/envs/Bodo/lib/python3.12/site-packages/bodo/numba_compat.py", line 874, in _compile_for_args
    raise error
bodo.utils.typing.BodoError: DataFrame.flags not supported yet

Unsupported Arguments

Supported APIs may not support all optional arguments. Supplying an unsupported argument will result in a BodoError:

BodoError: <method>: <keyword> argument not supported yet

For example:

>>> @bodo.jit
... def f(df):
...     return df.sort_index(key=lambda x: x.str.lower())
...
>>> f(df)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/opt/miniconda3/envs/Bodo/lib/python3.12/site-packages/bodo/numba_compat.py", line 874, in _compile_for_args
    raise error
bodo.utils.typing.BodoError: DataFrame.sort_index(): key parameter only supports default value None
Please check supported Pandas operations here (https://docs.bodo.ai/latest/api_docs/pandas/dataframe/).

Type Stability Errors

Bodo needs to infer data types for all program variables for successful JIT compilation. A type stability issue arises when different program control flow paths assign values with different types to a variable. For example, variable a below could either be an integer or a string:

>>> @bodo.jit
... def f(flag):
...     if flag:
...         a = 3
...     else:
...         a = "A"
...     return a
...
>>> f(True)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/opt/miniconda3/envs/Bodo/lib/python3.12/site-packages/bodo/numba_compat.py", line 874, in _compile_for_args
    raise error
bodo.utils.typing.BodoError: Unable to unify the following function return types: [Literal[int](3), Literal[str](A)]

The error TypingError: Cannot unify <type1> and <type2> means that the two possible data types cannot be combined and therefore, the variable cannot have a single data type.

Dataframe variables require their schema (column names and their types) to be consistent for type stability (see dataframe schema stability). For example, the dataframe variable df below could either have a single column ("A": integer) or two columns ("A": integer, "B": float) depending on the runtime value of flag, which results in a type stability error:

>>> @bodo.jit
... def f(flag):
...     df = pd.DataFrame({"A": [1, 2, 3, 4]})
...     if flag:
...         df["B"] = [1.2, 0.4, 0.7, 121.9]
...     print(df)
...
>>> f(True)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/opt/miniconda3/envs/Bodo/lib/python3.12/site-packages/bodo/numba_compat.py", line 854, in _compile_for_args
    error_rewrite(e, 'typing')
  File "/opt/miniconda3/envs/Bodo/lib/python3.12/site-packages/bodo/numba_compat.py", line 763, in error_rewrite
    raise e.with_traceback(None)
numba.core.errors.TypingError: Cannot unify dataframe((Array(int64, 1, 'C', False, aligned=True),), RangeIndexType(none), ('A',), 1D_Block_Var, False, False) and dataframe((Array(int64, 1, 'C', False, aligned=True), Array(float64, 1, 'C', False, aligned=True)), RangeIndexType(none), ('A', 'B'), 1D_Block_Var, False, False) for 'df', defined at <stdin> (3)

Additionally, some function arguments need to be constant to ensure type stability. In certain cases where it is possible, Bodo may infer the constant values. In other cases, it may throw an error indicating that the argument should be constant. For instance, axis argument in pd.concat determines whether the output is a Series type or a dataframe type in the example below. Therefore, Bodo needs to know the value at compilation time for type inference. Otherwise, an error is thrown (passing axis as argument to the JIT function fixes the error in this case):

>>> import pandas as pd
>>> import bodo
>>> @bodo.jit
... def f(S1, S2, flag):
...     axis = 0
...     if flag:
...         axis = 1
...     return pd.concat([S1, S2], axis=axis)
...
>>> S1 = pd.Series([1, 2, 3], name="A")
>>> S2 = pd.Series([3, 4, 5], name="B")
>>> f(S1, S2, False)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/opt/miniconda3/envs/Bodo/lib/python3.12/site-packages/bodo/numba_compat.py", line 874, in _compile_for_args
    raise error
bodo.utils.typing.BodoError: pd.concat(): 'axis' should be a constant integer


>>> @bodo.jit
... def f(S1, S2, axis):
...     return pd.concat([S1, S2], axis=axis)
...
>>> print(f(S1, S2, 0))

    0    1
    1    2
    2    3
    0    3
    1    4
    2    5
    dtype: int64
See Bodo API reference for more details on argument requirements.

Troubleshooting Compilation Errors

Now that we understand what causes the error, let's fix it!

For potential unsupported APIs, Python feature gaps or type stability issues try the following:

  1. Make sure your code works in Python. In a lot of cases, a Bodo decorated function does not compile, but it does not compile in Python either.

  2. Refactor your code with supported operations if possible. For instance, the sort_index(key=lambda ...) examble above can be replaced with regular sort_values:

    >>> df = pd.DataFrame({"a": [1, 2, 3, 4]}, index=['A', 'b', 'C', 'd'])
    >>> @bodo.jit
    ... def f(df):
    ...     return df.sort_index(key=lambda x: x.str.lower())
    ...
    >>> f(df)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/opt/miniconda3/envs/Bodo/lib/python3.12/site-packages/bodo/numba_compat.py", line 874, in _compile_for_args
        raise error
    bodo.utils.typing.BodoError: DataFrame.sort_index(): key parameter only supports default value None
    
    >>> @bodo.jit
    ... def f(df):
    ...     df["key"] = df.index.map(lambda a: a.lower())
    ...     return df.sort_values("key").drop(columns="key")
    ...
    >>> f(df)
        a
        A  1
        b  2
        C  3
        d  4
    
  3. Refactor your code and use regular Python for unsupported features.

    a. Move the code causing issues to regular Python and pass necessary data to JIT functions.

    b. Use @bodo.wrap_python to perform some computation within JIT functions in regular Python if necessary (see @bodo.wrap_python).

  4. Refactor your code to make it type stable (see type stability). For example:

    >>> flag = True
    >>> @bodo.jit
    ... def f(flag):
    ...     df = pd.read_parquet("in.parquet")
    ...     if flag:
    ...             df["C"] = 1
    ...     df.to_parquet("out.parquet")
    ...
    >>> f(flag)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/opt/miniconda3/envs/Bodo/lib/python3.12/site-packages/bodo/numba_compat.py", line 854, in _compile_for_args
        error_rewrite(e, 'typing')
      File "/opt/miniconda3/envs/Bodo/lib/python3.12/site-packages/bodo/numba_compat.py", line 763, in error_rewrite
        raise e.with_traceback(None)
    numba.core.errors.TypingError: Cannot unify dataframe((Array(datetime64[ns], 1, 'C', False, aligned=True), Array(int64, 1, 'C', False, aligned=True)), RangeIndexType(none), ('A', 'B'), 1D_Block_Var, True, False) and dataframe((Array(datetime64[ns], 1, 'C', False, aligned=True), Array(int64, 1, 'C', False, aligned=True), Array(int64, 1, 'C', False, aligned=True)), RangeIndexType(none), ('A', 'B', 'C'), 1D_Block_Var, True, False) for 'df', defined at <stdin> (3)
    
    
    
    >>> @bodo.jit
    ... def f1():
    ...     df = pd.read_parquet("in.parquet")
    ...     return df
    ...
    >>> @bodo.jit
    ... def f2(df):
    ...     df["C"] = 1
    ...     return df
    ...
    >>> @bodo.jit
    ... def f3(df):
    ...     df.to_parquet("out.parquet")
    ...
    >>> df = f1()
    >>> if flag:
    ...     df = f2(df)
    ...
    >>> f3(df)
    

Disabling Python Output Buffering

Sometimes standard output prints may not appear when the program fails, due to Python's I/O buffering. Therefore, setting PYTHONUNBUFFERED environment variable is recommended for debugging:

export PYTHONUNBUFFERED=1

Requesting Unsupported Functionality and Reporting Errors

If you want to request a new feature, or report a bug you have found, please create an issue in our GitHub repository. If you encounter an error which is not covered on this page, please report it to our repository as well.