General Functions
General functions are the most commonly used functions in Pandas. They include functions for data manipulation, data cleaning, data merging, and more.
Data Manipulations
| Function | 
Description | 
| pd.concat | 
Concatenate pandas objects along a particular axis with optional set logic along the other axes. | 
| pd.crosstab | 
Compute a simple cross-tabulation of two (or more) factors. | 
| pd.cut | 
Bin values into discrete intervals. | 
| pd.qcut | 
Quantile-based discretization function. | 
| pd.get_dummies | 
Convert categorical variable into dummy/indicator variables. | 
| pd.merge | 
Merge DataFrame or named Series objects with a database-style join. | 
| pd.pivot | 
Reshape data (produce a “pivot” table) based on column values. | 
| pd.pivot_table | 
Create a spreadsheet-style pivot table as a DataFrame. | 
| pd.unique | 
Hash table-based unique. | 
Top Level Missing Data
| Function | 
Description | 
| pd.isna | 
Detect missing values. | 
| pd.notna | 
Detect existing (non-missing) values. | 
| pd.isnull | 
Detect missing values. | 
| pd.notnull | 
Detect existing (non-missing) values. | 
Top Level Conversions
| Function | 
Description | 
| pd.to_numeric | 
Convert argument to a numeric type. |