Series¶
Bodo provides extensive Series support. However, operations between Series (+, -, /, , *) do not implicitly align values based on their associated index values yet.
Attributes¶
pd.Series
pd.Series.index
pd.Series.values
pd.Series.dtype
pd.Series.shape
pd.Series.nbytes
pd.Series.ndim
pd.Series.size
pd.Series.T
pd.Series.memory_usage
pd.Series.hasnans
pd.Series.empty
pd.Series.dtypes
pd.Series.name
Conversion¶
Indexing, iteration¶
Location based indexing using []
, iat
, and
iloc
is supported. Changing values of existing string
Series using these operators is not supported yet.
Binary operator functions¶
pd.Series.add
pd.Series.sub
pd.Series.mul
pd.Series.div
pd.Series.truediv
pd.Series.floordiv
pd.Series.mod
pd.Series.pow
pd.Series.radd
pd.Series.rsub
pd.Series.rmul
pd.Series.rdiv
pd.Series.rtruediv
pd.Series.rfloordiv
pd.Series.rmod
pd.Series.rpow
pd.Series.combine
pd.Series.round
pd.Series.lt
pd.Series.gt
pd.Series.le
pd.Series.ge
pd.Series.ne
pd.Series.eq
pd.Series.dot
Function application, GroupBy & Window¶
Computations / Descriptive Stats¶
Statistical functions below are supported without optional arguments unless support is explicitly mentioned.
pd.Series.abs
pd.Series.all
pd.Series.any
pd.Series.autocorr
pd.Series.between
pd.Series.corr
pd.Series.count
pd.Series.cov
pd.Series.cummin
pd.Series.cummax
pd.Series.cumprod
pd.Series.cumsum
pd.Series.describe
pd.Series.diff
pd.Series.kurt
- [
pd.Series.mad
][pdseriesmad] pd.Series.max
pd.Series.mean
pd.Series.median
pd.Series.min
pd.Series.nlargest
pd.Series.nsmallest
pd.Series.pct_change
pd.Series.prod
pd.Series.product
pd.Series.quantile
pd.Series.rank
pd.Series.sem
pd.Series.skew
pd.Series.std
pd.Series.sum
pd.Series.var
pd.Series.kurtosis
pd.Series.unique
pd.Series.nunique
- [
pd.Series.is_monotonic
][pdseriesis_monotonic] pd.Series.is_monotonic_increasing
pd.Series.is_monotonic_decreasing
pd.Series.value_counts
Reindexing / Selection / Label manipulation¶
pd.Series.drop_duplicates
pd.Series.duplicated
pd.Series.equals
pd.Series.first
pd.Series.head
pd.Series.idxmax
pd.Series.idxmin
pd.Series.isin
pd.Series.last
pd.Series.rename
pd.Series.reset_index
pd.Series.take
pd.Series.tail
pd.Series.where
pd.Series.mask
Missing data handling¶
pd.Series.backfill
pd.Series.bfill
pd.Series.dropna
pd.Series.ffill
pd.Series.fillna
pd.Series.isna
pd.Series.isnull
pd.Series.notna
pd.Series.notnull
pd.Series.pad
pd.Series.replace
Reshaping, sorting¶
Combining / comparing / joining / merging¶
- [
pd.Series.append
][pdseriesappend]
Time series-related¶
Datetime properties¶
pd.Series.dt.date
pd.Series.dt.year
pd.Series.dt.month
pd.Series.dt.day
pd.Series.dt.hour
pd.Series.dt.minute
pd.Series.dt.second
pd.Series.dt.microsecond
pd.Series.dt.nanosecond
pd.Series.dt.week
- [
pd.Series.dt.weekofyear
][pdseriesdtweekofyear] pd.Series.dt.day_of_week
pd.Series.dt.weekday
pd.Series.dt.dayofyear
pd.Series.dt.day_of_year
pd.Series.dt.quarter
pd.Series.dt.is_month_start
pd.Series.dt.is_month_end
pd.Series.dt.is_quarter_start
pd.Series.dt.is_quarter_end
pd.Series.dt.is_year_start
pd.Series.dt.is_year_end
pd.Series.dt.daysinmonth
pd.Series.dt.days_in_month
Datetime methods¶
pd.Series.dt.normalize
pd.Series.dt.strftime
pd.Series.dt.round
pd.Series.dt.floor
pd.Series.dt.ceil
pd.Series.dt.month_name
pd.Series.dt.day_name
String handling¶
pd.Series.str.capitalize
pd.Series.str.cat
pd.Series.str.center
pd.Series.str.contains
pd.Series.str.count
pd.Series.str.endswith
pd.Series.str.extract
pd.Series.str.extractall
pd.Series.str.find
pd.Series.str.get
pd.Series.str.join
pd.Series.str.len
pd.Series.str.ljust
pd.Series.str.lower
pd.Series.str.lstrip
pd.Series.str.pad
pd.Series.str.repeat
pd.Series.str.replace
pd.Series.str.rfind
pd.Series.str.rjist
pd.Series.str.restrip
pd.Series.str.slice
pd.Series.str.slice_replace
pd.Series.str.split
pd.Series.str.startswith
pd.Series.str.strip
pd.Series.str.swapcase
pd.Series.str.title
pd.Series.str.upper
pd.Series.str.zfill
pd.Series.str.isalnum
pd.Series.str.isalpha
pd.Series.str.isdigit
pd.Series.str.isspace
pd.Series.str.islower
pd.Series.str.isupper
pd.Series.str.istitle
pd.Series.str.isnumeric
pd.Series.str.isdecimal
Categorical accessor¶
Serialization / IO / Conversion¶
Heterogeneous Series¶
Bodo's Series implementation requires all elements to share a common data type. However, in situations where the size and types of the elements are constant at compile time, Bodo has some mixed type handling with its Heterogeneous Series type.
Warning
This type's primary purpose is for iterating through the rows of a DataFrame with different column types. You should not attempt to directly create Series with mixed types.
Heterogeneous Series operations are a subset of those supported for Series and the supported operations are listed below.