NATURAL JOIN¶
A natural join is a type of join that provides an equality condition on all columns with the same name and only returns 1 column for the keys. On cannot be provided because it is implied but all join types can be provided.
For example: Here are the different types of the joins in SQL:- (INNER) JOIN: returns records that have matching values in both tables
- LEFT (OUTER) JOIN: returns all records from the left table, and the matched records from the right table
- RIGHT (OUTER) JOIN: returns all records from the right table, and the matched records from the left table
- FULL (OUTER) JOIN: returns all records when there is a match in either left or right table
Example Usage¶
>>>@bodo.jit
... def g1(df1, df2):
...    bc = bodosql.BodoSQLContext({"CUSTOMERS":df1, "PAYMENTS":df2})
...    query = "SELECT payments.* FROM customers NATURAL JOIN payments"
...    res = bc.sql(query)
...    return res
>>>@bodo.jit
... def g2(df1, df2):
...    bc = bodosql.BodoSQLContext({"CUSTOMERS":df1, "PAYMENTS":df2})
...    query = "SELECT payments.* FROM customers NATURAL FULL JOIN payments"
...    res = bc.sql(query)
...    return res
>>>customer_df = pd.DataFrame({
...    "CUSTOMERID": [0, 2, 4, 5, 7,],
...    "NAME": ["Deangelo Todd","Nikolai Kent","Eden Heath", "Taliyah Martinez","Demetrius Chavez",],
...    "ADDRESS": ["223 Iroquois LanenWest New York, NJ 07093","37 Depot StreetnTaunton, MA 02780",
...                "639 Maple St.nNorth Kingstown, RI 02852","93 Bowman Rd.nChester, PA 19013",
...                "513 Manchester Ave.nWindsor, CT 06095",],
...    "BALANCE": [1123.34, 2133.43, 23.58, 8345.15, 943.43,]
... })
>>>payment_df = pd.DataFrame({
...     "CUSTOMERID": [0, 1, 4, 6, 7],
...     "paymentType": ["VISA", "VISA", "AMEX", "VISA", "WIRE",],
... })
>>>g1(customer_df, payment_df) # INNER JOIN
   CUSTOMERID paymentType
0           0        VISA
1           4        AMEX
2           7        WIRE
>>>g2(customer_df, payment_df) # OUTER JOIN
   CUSTOMERID paymentType
0           0        VISA
1        <NA>        <NA>
2           4        AMEX
3        <NA>        <NA>
4           7        WIRE
5           1        VISA
6           6        VISA