ORDER BY¶
The ORDER BY
keyword sorts the resulting DataFrame in ascending
or descending order. By default, it sorts the records in ascending order.
NULLs are sorted in accordance with the optional NULLS FIRST
or
NULLS LAST
keywords.
If the null ordering is not provided, then the default ordering depends
on if the column is ascending or descending. For ascending order, by
default NULL values are returned at the end, while for descending order
nulls are returned at the front. If the order of nulls matter we strongly
recommend explicitly providing either NULLS FIRST
or
NULLS LAST
.
SELECT <COLUMN_NAMES>
FROM <TABLE_NAME>
ORDER BY <ORDERED_COLUMN_NAMES> [ASC|DESC] [NULLS FIRST|LAST]
For Example:
Example Usage¶
>>>@bodo.jit
... def g(df):
... bc = bodosql.BodoSQLContext({"CUSTOMERS":df})
... query = "SELECT name, balance FROM customers ORDER BY balance"
... res = bc.sql(query)
... return res
>>>customers_df = pd.DataFrame({
... "CUSTOMERID": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
... "NAME": ["Deangelo Todd","Nikolai Kent","Eden Heath", "Taliyah Martinez",
... "Demetrius Chavez","Weston Jefferson","Jonathon Middleton",
... "Shawn Winters","Keely Hutchinson", "Darryl Rosales",],
... "BALANCE": [1123.34, 2133.43, 23.58, 8345.15, 943.43, 68.34, 12764.50, 3489.25, 654.24, 25645.39]
... })
>>>g(customers_df)
NAME BALANCE
2 Eden Heath 23.58
5 Weston Jefferson 68.34
8 Keely Hutchinson 654.24
4 Demetrius Chavez 943.43
0 Deangelo Todd 1123.34
1 Nikolai Kent 2133.43
7 Shawn Winters 3489.25
3 Taliyah Martinez 8345.15
6 Jonathon Middleton 12764.50
9 Darryl Rosales 25645.39