Skip to content
Bodo Developer Documentation
YEAROFWEEKISO
Initializing search
Bodo Developer Documentation
Home
About Bodo
Getting Started
Getting Started
Bodo SDK Trial
Quick Start (Cloud)
Local SQL Engine Quick Start (Community Edition)
Local Python Engine Quick Start (Community Edition)
Local Iceberg Quick Start (Community Edition)
Tabular Catalog Quick Start
Guides
Guides
Installation and Setup Guides
Installation and Setup Guides
Bodo Platform
Bodo Platform
Bodo Platform on AWS
Bodo Platform on Azure
Bodo Platform SDK
Bodo On-Prem
Bodo On-Prem
Installing Bodo Community Edition
Configuring Bodo Enterprise Edition
Interactive Bodo Cluster Setup using IPyParallel
Recommended MPI Settings
Recommended Cluster Configuration
Python Development Guide
Using the Bodo Cloud Platform
Using the Bodo Cloud Platform
Organization Basics
Creating a Cluster
Using Notebooks
Using Native SQL with Catalogs
Running a Batch Job
Using your own Instance Role for a Cluster
Managing Packages Manually
Running Shell Commands on a Cluster
Connecting to a Cluster
Configuring Customer Managed VPC
AWS PrivateLink
Troubleshooting
Understanding Parallelism with Bodo
Understanding Parallelism with Bodo
Basics of Bodo Parallelism
Advanced Parallelism Topics
Typing Considerations
Unsupported Programs
Iceberg
Iceberg
Introduction
Reading and Writing
Supported Data Types
Puffin Files
Scalable Data I/O with Bodo
Using Regular Python inside Bodo (Object Mode)
Measuring Performance
Caching
Inlining
Bodo Errors
Compilation Tips
Verbose Mode
Deploying Bodo with Kubernetes
API Reference
API Reference
BodoSQL Reference
BodoSQL Reference
Supported DataFrame Types
Aliasing
User Defined Functions
Caching and Parameterized Queries
I/O handling
BodoSQLContext API
TablePath API
Database Catalogs
Identifier Case Sensitivity
Performance Considerations
Errors
API Reference
API Reference
DDL
DDL
ALTER TABLE
ALTER VIEW
CREATE SCHEMA
CREATE TABLE
CREATE VIEW
DESCRIBE TABLE
DESCRIBE VIEW
DROP SCHEMA
DROP TABLE
DROP VIEW
SHOW OBJECTS
SHOW SCHEMAS
SHOW TABLES
SHOW VIEWS
DML
DML
INSERT INTO
Query Syntax
Query Syntax
Aliasing
CASE
CAST
GREATEST
GROUP BY
HAVING
::
INTERSECT
JOIN
LEAST
LIKE
LIMIT
NATURAL JOIN
NOT BETWEEN
NOT IN
ORDER BY
PIVOT
QUALIFY
SELECT
SELECT DISTINCT
UNION
WHERE
WITH
Functions
Functions
Aggregations and Window Functions
Aggregations and Window Functions
ANY_VALUE
APPROX_PERCENTILE
ARRAY_AGG
ARRAY_UNIQUE_AGG
AVG
BITAND_AGG
BITOR_AGG
BITXOR_AGG
BOOLAND_AGG
BOOLOR_AGG
BOOLXOR_AGG
CONDITIONAL_CHANGE_EVENT
CONDITIONAL_TRUE_EVENT
CORR
COUNT
COUNT_IF
COVAR_POP
COVAR_SAMP
CUME_DIST
DENSE_RANK
FIRST_VALUE
KURTOSIS
LAG
LAST_VALUE
LEAD
LISTAGG
MAX
MEDIAN
MIN
MODE
NTH_VALUE
NTILE
OBJECT_AGG
PERCENT_RANK
APPROX_PEPERCENTILE_CONTRCENTILE
PERCENTILE_DISC
RANK
RATIO_TO_REPORT
ROW_NUMBER
SKEW
STDDEV
STDDEV_POP
STDDEV_SAMP
SUM
VAR_POP
VAR_SAMP
VARIANCE
VARIANCE_POP
VARIANCE_SAMP
Array Functions
Array Functions
ARRAY_CAT
ARRAY_COMPACT
ARRAY_CONSTRUCT
ARRAY_CONSTRUCT_COMPACT
ARRAY_CONTAINS
ARRAY_EXCEPT
ARRAY_INTERSECTION
ARRAY_POSITION
ARRAY_REMOVE
ARRAY_REMOVE_AT
ARRAY_SIZE
ARRAY_SLICE
ARRAY_TO_STRING
ARRAYS_OVERLAP
GET
GET_IGNORE_CASE
Casting Functions
Casting Functions
TO_ARRAY
TO_BINARY
TO_BOOLEAN
TO_CHAR
TO_DATE
TO_DECIMAL
TO_DOUBLE
TO_NUMBER
TO_NUMERIC
TO_OBJECT
TO_TIME
TO_TIMESTAMP
TO_TIMESTAMP_LTZ
TO_TIMESTAMP_NTZ
TO_TIMESTAMP_TZ
TO_VARCHAR
TRY_TO_BINARY
TRY_TO_BOOLEAN
TRY_TO_DATE
TRY_TO_DECIMAL
TRY_TO_DOUBLE
TRY_TO_NUMBER
TRY_TO_NUMERIC
TRY_TO_TIME
TRY_TO_TIMESTAMP
TRY_TO_TIMESTAMP_LTZ
TRY_TO_TIMESTAMP_NTZ
TRY_TO_TIMESTAMP_TZ
Context Functions
Context Functions
CURRENT_DATABASE
CURRENT_ACCOUNT
Control Flow Functions
Control Flow Functions
COALESCE
DECODE
EQUAL_NULL
IF
IFF
IFNULL
Control Flow Functions
NULLIF
NULLIFZERO
NVL
NVL2
ZEROIFNULL
Data Generation Functions
Data Generation Functions
RANDOM
UNIFORM
UUID_STRING
Numeric Functions
Numeric Functions
ABS
ACOS
ASIN
ATAN
ATAN2
BITAND
BITNOT
BITOR
BITSHIFTLEFT
BITSHIFTRIGHT
BITXOR
BOOLAND
BOOLNOT
BOOLOR
BOOLXOR
CEIL
CEILING
CONV
COS
COTAN
DEGREES
EXP
FLOOR
GETBIT
HASH
LN
LOG
LOG10
MOD
PI
POWER
RADIANS
REGR_VALX
REGR_VALY
ROUND
SIGN
SIN
SQRT
TAN
TRUNC
TRUNCATE
Object Functions
Object Functions
GET_PATH
JSON_EXTRACT_PATH_TEXT
OBJECT_CONSTRUCT
OBJECT_CONSTRUCT_KEEP_NULL
OBJECT_DELETE
OBJECT_INSERT
OBJECT_KEYS
OBJECT_PICK
PARSE_JSON
Operators
Regular Expressions
String Functions
String Functions
BASE64_DECODE_BINARY
BASE64_DECODE_STRING
BASE64_ENCODE
CHAR
CHARINDEX
CONCAT
CONCAT_WS
EDITDISTANCE
ENDSWITH
HEX_DECODE_BINARY
HEX_DECODE_STRING
HEX_ENCODE
INSERT
JAROWINKLER_SIMILARITY
LCASE
LEFT
LENGTH
LOWER
LPAD
LTRIM
MD5
MD5_HEX
MID
ORD
POSITION
REPEAT
REPLACE
REVERSE
RIGHT
RPAD
RTRIM
SHA2
SHA2_HEX
SPACE
SPLIT_PART
STARTSWITH
STRCMP
STRTOK
SUBSTR
SUBSTRING
SUBSTRING_INDEX
TRIM
TRY_BASE64_DECODE_BINARY
TRY_BASE64_DECODE_STRING
TRY_HEX_DECODE_BINARY
TRY_HEX_DECODE_STRING
UCASE
UPPER
Table Functions
Table Functions
EXTERNAL_TABLE_FILES
FLATTEN
GENERATOR
SPLIT_TO_TABLE
Timestamp Functions
Timestamp Functions
ADDDATE
CURDATE
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
DATE_ADD
DATE_FORMAT
DATE_FROM_PARTS
DATE_PART
DATE_SUB
DATE_TRUNC
DATEADD
DATEDIFF
DATEFROMPARTS
DAYNAME
EXTRACT
FROM_DAYS
FROM_UNIXTIME
GETDATE
HOUR
LAST_DAY
LOCALTIME
LOCALTIMESTAMP
MAKEDATE
MICROSECOND
MINUTE
MONTH
MONTH_NAME
MONTHNAME
NOW
QUARTER
SECOND
STR_TO_DATE
SUBDATE
SYSDATE
SYSTIMESTAMP
TIME_FROM_PARTS
TIME_SLICE
TIMEADD
TIMEFROMPARTS
TIMESTAMP_FROM_PARTS
TIMESTAMP_LTZ_FROM_PARTS
TIMESTAMP_NTZ_FROM_PARTS
TIMESTAMP_TZ_FROM_PARTS
TIMESTAMPADD
TIMESTAMPDIFF
TIMESTAMPFROMPARTS
TIMESTAMPLTZFROMPARTS
TIMESTAMPNTZFROMPARTS
TIMESTAMPTZFROMPARTS
TO_DAYS
TO_SECONDS
TRUNC
UNIX_TIMESTAMP
UTC_DATE
UTC_TIMESTAMP
WEEK
WEEKDAY
WEEKISO
WEEKOFYEAR
YEAR
YEAROFWEEKISO
YEARWEEK
Type Predicates
Type Predicates
IS_ARRAY
IS_OBJECT
Bodo Parallel API Reference
Bodo Parallel API Reference
bodo.allgatherv
bodo.barrier
bodo.gatherv
bodo.get_rank
bodo.get_size
bodo.random_shuffle
bodo.rebalance
bodo.scatterv
Python Reference
Python Reference
Pandas
Pandas
General Functions
General Functions
pd.crosstab
pd.concat
pd.merge
pd.cut
pd.pivot
pd.pivot_table
pd.qcut
pd.unique
pd.get_dummies
pd.isna
pd.notna
pd.isnull
pd.notnull
pd.to_numeric
pd.to_datetime
pd.to_timedelta
pd.date_range
pd.timedelta_range
DataFrame
DataFrame
pd.Dataframe
pd.DataFrame.abs
pd.DataFrame.append
pd.DataFrame.apply
pd.DataFrame.assign
pd.DataFrame.astype
pd.DataFrame.columns
pd.DataFrame.copy
pd.DataFrame.corr
pd.DataFrame.count
pd.DataFrame.cov
pd.DataFrame.cumprod
pd.DataFrame.cumsum
pd.DataFrame
pd.DataFrame.describe
pd.DataFrame.index
pd.DataFrame.diff
pd.DataFrame.drop
pd.DataFrame.drop_duplicates
pd.DataFrame.dropna
pd.DataFrame.dtypes
pd.DataFrame.duplicated
pd.DataFrame.empty
pd.DataFrame.explode
pd.DataFrame.fillna
pd.DataFrame.filter
pd.DataFrame.first
pd.DataFrame.groupby
pd.DataFrame.head
pd.DataFrame.iat
pd.DataFrame.idxmax
pd.DataFrame.idxmin
pd.DataFrame.iloc
pd.DataFrame.infer_objects
pd.DataFrame.info
pd.DataFrame.insert
pd.DataFrame.isin
pd.DataFrame.isna
pd.DataFrame.isnull
pd.DataFrame.itertuples
pd.DataFrame.join
pd.DataFrame.last
pd.DataFrame.mask
pd.DataFrame.max
pd.DataFrame.mean
pd.DataFrame.median
pd.DataFrame.melt
pd.DataFrame.memory_usage
pd.DataFrame.merge
pd.DataFrame.min
pd.DataFrame.ndim
pd.DataFrame.notna
pd.DataFrame.notnull
pd.DataFrame.nunique
pd.DataFrame.pct_change
pd.DataFrame.pipe
pd.DataFrame.pivot
pd.DataFrame.pivot_table
pd.DataFrame.plot
pd.DataFrame.prod
pd.DataFrame.product
pd.DataFrame.quantile
pd.DataFrame.query
pd.DataFrame.rank
pd.DataFrame.rename
pd.DataFrame.replace
pd.DataFrame.reset_index
pd.DataFrame.rolling
pd.DataFrame.sample
pd.DataFrame.select_dtypes
pd.DataFrame.set_index
pd.DataFrame.shape
pd.DataFrame.shift
pd.DataFrame.size
pd.DataFrame.sort_index
pd.DataFrame.sort_values
pd.DataFrame.std
pd.DataFrame.sum
pd.DataFrame.tail
pd.DataFrame.take
pd.DataFrame.to_csv
pd.DataFrame.to_json
pd.DataFrame.to_numpy
pd.DataFrame.to_parquet
pd.DataFrame.to_sql
pd.DataFrame.to_string
pd.DataFrame.values
pd.DataFrame.var
pd.DataFrame.where
Groupby
Groupby
pd.core.groupby.Groupby.agg
pd.core.groupby.DataFrameGroupby.aggregate
pd.core.groupby.Groupby.apply
pd.core.groupby.Groupby.count
pd.core.groupby.Groupby.cumsum
pd.core.groupby.Groupby.first
pd.DataFrame.groupby
pd.core.groupby.Groupby.head
pd.core.groupby.DataFrameGroupby.idxmax
pd.core.groupby.DataFrameGroupby.idxmin
pd.core.groupby.Groupby.last
pd.core.groupby.Groupby.max
pd.core.groupby.Groupby.mean
pd.core.groupby.Groupby.median
pd.core.groupby.Groupby.min
pd.core.groupby.DataFrameGroupby.nunique
pd.core.groupby.Groupby.pipe
pd.core.groupby.Groupby.prod
pd.core.groupby.Groupby.rolling
pd.Series.groupby
pd.core.groupby.DataFrameGroupby.shift
pd.core.groupby.Groupby.size
pd.core.groupby.Groupby.std
pd.core.groupby.Groupby.sum
pd.core.groupby.DataFrameGroupby.transform
pd.core.groupby.SeriesGroupBy.value_counts
pd.core.groupby.Groupby.var
Series
Series
pd.Series
pd.Series.abs
pd.Series.add
pd.Series.all
pd.Series.any
pd.Series.append
pd.Series.apply
pd.Series.argsort
pd.Series.astype
pd.Series.autocorr
pd.Series.backfill
pd.Series.between
pd.Series.bfill
pd.Series.cat.codes
pd.Series.combine
pd.Series.copy
pd.Series.corr
pd.Series.count
pd.Series.cov
pd.Series.cummax
pd.Series.cummin
pd.Series.cumprod
pd.Series.cumsum
pd.Series.describe
pd.Series.diff
pd.Series.div
pd.Series.dot
pd.Series.drop_duplicates
pd.Series.dropna
pd.Series.dt.ceil
`pd.Series.dt.date
pd.Series.dt.day
pd.Series.dt.day_name
pd.Series.dt.day_of_week
pd.Series.dt.day_of_year
pd.Series.dt.dayofyear
pd.Series.dt.days_in_month
pd.Series.dt.daysinmonth
pd.Series.dt.floor
pd.Series.dt.hour
pd.Series.dt.is_month_end
pd.Series.dt.is_month_start
pd.Series.dt.is_quarter_end
pd.Series.dt.is_quarter_start
pd.Series.dt.is_year_end
pd.Series.dt.is_year_start
pd.Series.dt.microsecond
pd.Series.dt.minute
pd.Series.dt.month
pd.Series.dt.month_name
pd.Series.dt.nanosecond
pd.Series.dt.normalize
pd.Series.dt.quarter
pd.Series.dt.round
pd.Series.dt.second
pd.Series.dt.strftime
pd.Series.dt.week
pd.Series.dt.weekday
pd.Series.dt.weekofyear
pd.Series.dt.year
pd.Series.dtype
pd.Series.dtypes
pd.Series.duplicated
pd.Series.empty
pd.Series.eq
pd.Series.equals
pd.Series.explode
pd.Series.ffill
pd.Series.fillna
pd.Series.first
pd.Series.floordiv
pd.Series.ge
pd.Series.groupby
pd.Series.gt
pd.Series.hasnans
pd.Series.head
pd.Series.iat
pd.Series.idxmax
pd.Series.idxmin
pd.Series.iloc
pd.Series.is_monotonic
pd.Series.is_monotonic_decreasing
pd.Series.is_monotonic_increasing
pd.Series.isin
pd.Series.isna
pd.Series.isnull
pd.Series.kurt
pd.Series.kurtosis
pd.Series.last
pd.Series.le
pd.Series.loc
pd.Series.lt
pd.Series.mad
pd.Series.map
pd.Series.mask
pd.Series.max
pd.Series.mean
pd.Series.median
pd.Series.memory_usage
pd.Series.min
pd.Series.mod
pd.Series.mul
pd.Series.name
pd.Series.nbytes
pd.Series.ndim
pd.Series.ne
pd.Series.nlargest
pd.Series.notna
pd.Series.notnull
pd.Series.nsmallest
pd.Series.nunique
pd.Series.pad
pd.Series.pct_change
pd.Series.pipe
pd.Series.pow
pd.Series.prod
pd.Series.product
pd.Series.quantile
pd.Series.radd
pd.Series.rank
pd.Series.rdiv
pd.Series.rename
pd.Series.repeat
pd.Series.replace
pd.Series.reset_index
pd.Series.rfloordiv
pd.Series.rmod
pd.Series.rmul
pd.Series.rolling
pd.Series.round
pd.Series.rpow
pd.Series.rsub
pd.Series.rtruediv
pd.Series.sem
pd.Series.index
pd.Series.shape
pd.Series.shift
pd.Series.size
pd.Series.skew
pd.Series.sort_index
pd.Series.sort_values
pd.Series.std
pd.Series.str.capitalize
pd.Series.str.cat
pd.Series.str.center
pd.Series.str.contains
pd.Series.str.count
pd.Series.str.endswith
pd.Series.str.extract
pd.Series.str.extractall
pd.Series.str.find
pd.Series.str.get
pd.Series.str.isalnum
pd.Series.str.isalpha
pd.Series.str.isdecimal
pd.Series.str.isdigit
pd.Series.str.islower
pd.Series.str.isnumeric
pd.Series.str.isspace
pd.Series.str.istitle
pd.Series.str.isupper
pd.Series.str.join
pd.Series.str.len
pd.Series.str.ljust
pd.Series.str.lower
pd.Series.str.lstrip
pd.Series.str.pad
pd.Series.str.repeat
pd.Series.str.replace
pd.Series.str.restrip
pd.Series.str.rfind
pd.Series.str.rjist
pd.Series.str.slice
pd.Series.str.slice_replace
pd.Series.str.split
pd.Series.str.startswith
pd.Series.str.strip
pd.Series.str.swapcase
pd.Series.str.title
pd.Series.str.upper
pd.Series.str.zfill
pd.Series.sub
pd.Series.sum
pd.Series.T
pd.Series.tail
pd.Series.take
pd.Series.to_csv
pd.Series.to_dict
pd.Series.to_frame
pd.Series.to_numpy
pd.Series.tolist
pd.Series.truediv
pd.Series.unique
pd.Series.value_counts
pd.Series.values
pd.Series.var
pd.Series.where
Window
Window
pd.core.window.rolling.Rolling.apply
pd.core.window.rolling.Rolling.corr
pd.core.window.rolling.Rolling.count
pd.core.window.rolling.Rolling.cov
pd.core.window.rolling.Rolling.max
pd.core.window.rolling.Rolling.mean
pd.core.window.rolling.Rolling.median
pd.core.window.rolling.Rolling.min
pd.core.window.rolling.Rolling.std
pd.core.window.rolling.Rolling.sum
pd.core.window.rolling.Rolling.var
DateOffsets
DateOffsets
pd.tseries.offsets.DateOffset
pd.tseries.offsets.MonthBegin
pd.tseries.offsets.MonthEnd
pd.tseries.offsets.DateOffset.n
pd.tseries.offsets.DateOffset.normalize`
pd.tseries.offsets.Week
Input/Output
Input/Output
pd.read_csv
pd.read_excel
pd.read_json
pd.read_parquet
pd.read_sql
pd.read_sql_table
Index Objects
Index Objects
pd.Index.all
pd.Index.any
pd.Index.argmax
pd.Index.argmin
pd.Index.argsort
pd.Index.copy
pd.DateTimeIndex.date
pd.DateTimeIndex
pd.DateTimeIndex.day
pd.DateTimeIndex.day_of_week
pd.DateTimeIndex.day_of_year
pd.DateTimeIndex.dayofweek
pd.DateTimeIndex.dayofyear
pd.TimedeltaIndex.days
pd.Index.difference
pd.Index.drop_duplicates
pd.Index.dtype
pd.Index.duplicated
pd.Index.empty
pd.Float64Index
pd.MultiIndex.from_product
pd.Index.get_loc
pd.DateTimeIndex.hour
pd.Index.inferred_type
pd.Int64Index
pd.Index.intersection
pd.Index.is_all_dates
pd.Index.is_boolean
pd.Index.is_categorical
pd.Index.is_floating
pd.Index.is_integer
pd.Index.is_interval
pd.DateTimeIndex.is_leap_year
pd.Index.is_monotonic_decreasing
pd.Index.is_monotonic_increasing
pd.DateTimeIndex.is_month_end
pd.DateTimeIndex.is_month_start
pd.Index.is_numeric
pd.Index.is_object
pd.DateTimeIndex.is_quarter_end
pd.DateTimeIndex.is_quarter_start
pd.DateTimeIndex.is_year_end
pd.DateTimeIndex.is_year_start
pd.Index.isin
pd.Index.isna
pd.Index.isnull
pd.Index.map
pd.Index.max
pd.DateTimeIndex.microsecond
pd.TimedeltaIndex.microseconds
pd.Index.min
pd.DateTimeIndex.minute
pd.DateTimeIndex.month
pd.Index.name
pd.Index.names
pd.DateTimeIndex.nanosecond
pd.TimedeltaIndex.nanoseconds
pd.Index.nbytes
pd.Index.ndim
pd.Index.nlevels
pd.Index.nunique
pd.Index.putmask
pd.DateTimeIndex.quarter
pd.RangeIndex
pd.Index.rename
pd.Index.repeat
pd.DateTimeIndex.second
pd.TimedeltaIndex.seconds
pd.Index.shape
pd.Index.size
pd.Index.sort_values
pd.Index.symmetric_difference
pd.Index.T
pd.Index.take
pd.TimedeltaIndex
pd.Index.to_frame
pd.Index.to_list
pd.Index.to_numpy
pd.Index.to_series
pd.Index.tolist
pd.UInt64Index
pd.Index.union
pd.Index.unique
pd.Index.values
pd.DateTimeIndex.week
pd.DateTimeIndex.weekday
pd.DateTimeIndex.weekofyear
pd.Index.where
pd.DateTimeIndex.year
TimeDelta
TimeDelta
pd.Timedelta.ceil
pd.Timedelta.components
pd.Timedelta.days
pd.Timedelta.delta
pd.Timedelta.floor
pd.Timedelta.microseconds
pd.Timedelta.nanoseconds
pd.Timedelta.round
pd.Timedelta.seconds
pd.Timedelta
pd.Timedelta.to_numpy
pd.Timedelta.to_pytimedelta
pd.Timedelta.to_timedelta64
pd.Timedelta.total_seconds
pd.Timedelta.value
Timestamp
Timestamp
pd.Timestamp.ceil
pd.Timestamp.date
pd.Timestamp.day
pd.Timestamp.day_name
pd.Timestamp.day_of_week
pd.Timestamp.day_of_year
pd.Timestamp.dayofweek
pd.Timestamp.dayofyear
pd.Timestamp.days_in_month
pd.Timestamp.daysinmonth
pd.Timestamp.floor
pd.Timestamp.hour
pd.Timestamp.is_leap_year
pd.Timestamp.is_month_end
pd.Timestamp.is_month_start
pd.Timestamp.is_quarter_end
pd.Timestamp.is_quarter_start
pd.Timestamp.is_year_end
pd.Timestamp.is_year_start
pd.Timestamp.isocalendar
pd.Timestamp.isoformat
pd.Timestamp.microsecond
pd.Timestamp.month
pd.Timestamp.month_name
pd.Timestamp.nanosecond
pd.Timestamp.normalize
pd.Timestamp.now
pd.Timestamp.quarter
pd.Timestamp.round
pd.Timestamp.second
pd.Timestamp.strftime
pd.Timestamp
pd.Timestamp.toordinal
pd.Timestamp.value
pd.Timestamp.week
pd.Timestamp.weekday
pd.Timestamp.weekofyear
pd.Timestamp.year
Numpy
User Defined Functions (UDFs)
Machine Learning
Machine Learning
Scikit Learn
Scikit Learn
sklearn.cluster
sklearn.ensemble
sklearn.feature_extraction
sklearn.linear_model
sklearn.metrics
sklearn.model_selection
sklearn.naive_bayes
sklearn.preprocessing
sklearn.svm
Miscellaneous Functions
Bodo Platform SDK Reference
Release Notes
Release Notes
Home
API Reference
BodoSQL Reference
API Reference
Functions
Timestamp Functions
YEAROFWEEKISO
¶
YEAROFWEEKISO
(
timestamp_val
)
Computes the ISO year for the provided timestamp value.
Back to top