sklearn.ensemble¶
sklearn.ensemble.RandomForestClassifier¶
sklearn.ensemble.RandomForestClassifier
This class provides Random Forest Classifier, an ensemble learning model, for distributed large-scale learning.
Important
random_state
value is ignored when running on a multi-node cluster.
Methods¶
sklearn.ensemble.RandomForestClassifier.fit¶
-
sklearn.ensemble.RandomForestClassifier.fit(X, y, sample_weight=None)
Supported Arguments
-X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix. -y
: NumPy Array -sample_weight
: Numeric NumPy Array (only if data is not distributed)
sklearn.ensemble.RandomForestClassifier.predict¶
-
sklearn.ensemble.RandomForestClassifier.predict(X)
Supported Arguments
-X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix.
sklearn.ensemble.RandomForestClassifier.predict_log_proba¶
-
sklearn.ensemble.RandomForestClassifier.predict_log_proba(X)
Supported Arguments
-X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix.
sklearn.ensemble.RandomForestClassifier.predict_proba¶
-
sklearn.ensemble.RandomForestClassifier.predict_proba(X)
Supported Arguments
-X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix.
sklearn.ensemble.RandomForestClassifier.score¶
-
sklearn.ensemble.RandomForestClassifier.score(X, y, sample_weight=None)
Supported Arguments
-X
: NumPy Array or Pandas Dataframes. -y
: NumPy Array -sample_weight
: Numeric NumPy Array
Example Usage¶
>>> import bodo
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=1000, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> @bodo.jit
>>> def test_random_forest_classifier(X, y):
... clf = RandomForestClassifier(max_depth=2)
... clf.fit(X, y)
... ans = clf.predict(np.array([[0, 0, 0, 0]]))
... print(ans)
...
>>> test_random_forest_classifier(X, y)
[1]
sklearn.ensemble.RandomForestRegressor¶
sklearn.ensemble.RandomForestRegressor
This class provides Random Forest Regressor, an ensemble learning model, for distributed large-scale learning.
Important
random_state
value is ignored when running on a multi-node cluster.
Methods¶
sklearn.ensemble.RandomForestRegressor.fit¶
-
sklearn.ensemble.RandomForestRegressor.fit(X, y, sample_weight=None)
Supported Arguments
-X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix. -y
: NumPy Array -sample_weight
: Numeric NumPy Array (only if data is not distributed)
sklearn.ensemble.RandomForestRegressor.predict¶
-
sklearn.ensemble.RandomForestRegressor.predict(X)
Supported Arguments
-X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix.
sklearn.ensemble.RandomForestRegressor.score¶
-
sklearn.ensemble.RandomForestRegressor.score(X, y, sample_weight=None)
Supported Arguments
-X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix. -y
: NumPy Array -sample_weight
: Numeric NumPy Array
Example Usage¶
>>> import bodo
>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=4, n_informative=2,
... random_state=0, shuffle=False)
>>> @bodo.jit
>>> def test_random_forest_regressor(X, y):
... regr = RandomForestRegressor(max_depth=2)
... regr.fit(X, y)
... ans = regr.predict(np.array([[0, 0, 0, 0]]))
... print(ans)
...
>>> test_random_forest_regressor(X, y)
[-6.7933243]