pd.DataFrame.apply
¶
pandas.DataFrame.apply(func, axis=0, raw=False, result_type=None, args=(), _bodo_inline=False, \**kwargs)
Supported Arguments¶
func
: function (e.g. lambda) (axis must = 1), jit function (axis must = 1), String which refers to a supported DataFrame method- Must be constant at Compile Time
axis
: Integer (0, 1), String (only if the method takes axis as an argument )- Must be constant at Compile Time
_bodo_inline
: boolean- Must be constant at Compile Time
Example Usage¶
>>> @bodo.jit
... def f():
... df = pd.DataFrame({"A": [1,2,3], "B": [4,5,6], "C": [7,8,9]})
... return df.apply(lambda x: x["A"] * (x["B"] + x["C"]))
>>> f()
0 11
1 26
2 45
dtype: int64
Note
Supports extra _bodo_inline
boolean argument to manually control bodo's inlining behavior.
Inlining user-defined functions (UDFs) can potentially improve performance at the expense of
extra compilation time. Bodo uses heuristics to make a decision automatically if _bodo_inline
is not provided.