Skip to content

pd.pivot_table

pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, sort=True)

Supported Arguments

argument datatypes
data DataFrame
values Constant Column Label or list of labels
index Constant Column Label or list of labels
columns Constant Column Label
aggfunc String Constant

Note

This code takes two different paths depending on if pivot values are annotated. When pivot values are annotated then output columns are set to the annotated values. For example, @bodo.jit(pivots={'pt': ['small', 'large']}) declares the output pivot table pt will have columns called small and large.

If pivot values are not annotated, then the number of columns and names of the output DataFrame won't be known at compile time. To update typing information on DataFrame you should pass it back to Python.

Example Usage

>>> @bodo.jit(pivots={'pivoted_tbl': ['X', 'Y']})
... def f():
...   df = pd.DataFrame({"A": ["X","X","X","X","Y","Y"], "B": [1,2,3,4,5,6], "C": [10,11,12,20,21,22]})
...   pivoted_tbl = pd.pivot_table(df, columns="A", index="B", values="C", aggfunc="mean")
...   return pivoted_tbl
>>> f()
      X     Y
B
1  10.0   NaN
2  11.0   NaN
3  12.0   NaN
4  20.0   NaN
5   NaN  21.0
6   NaN  22.0