Bodo SQL Quickstart (Local)¶
This quickstart guide will walk you through the process of running a simple SQL query using Bodo on your local machine.
Prerequisites¶
Conda is the recommended way to install Bodo on your local environment. You can install the Community Edition using conda, which allows you to use Bodo for free on up to 8 cores.
conda create -n Bodo python=3.12 -c conda-forge
conda activate Bodo
conda install bodosql -c bodo.ai -c conda-forge
These commands create a conda environment called Bodo
and install Bodo Community Edition.
Generate Sample Data¶
Let's start by creating a Parquet file with some sample data. The following Python code creates a Parquet file with two columns A
and B
and 20 million rows. The column A
contains values from 0 to 29, and the column B
contains values from 0 to 19,999,999.
import pandas as pd
import numpy as np
import bodo
import bodosql
import time
NUM_GROUPS = 30
NUM_ROWS = 20_000_000
df = pd.DataFrame({
"A": np.arange(NUM_ROWS) % NUM_GROUPS,
"B": np.arange(NUM_ROWS)
})
df.to_parquet("my_data.pq")
Create a local in-memory SQL Table¶
Now let's create a local in-memory SQL table from the Parquet file. We can use the TablePATH
API to register the table into our BodoSQLContext
.
Write a SQL Query¶
Now we can write a SQL query to compute the sum of column A
for all rows where B
is greater than 4. We encapsulate the statement within a @bodo.jit
decorated function to indicate that we want to compile the code using Bodo. Let's also add a timer to measure the execution time.
@bodo.jit(cache=True)
def query(bc):
t1 = time.time()
df1 = bc.sql("SELECT SUM(A) as SUM_OF_COLUMN_A FROM TABLE1 WHERE B > 4")
print("Execution time:", time.time() - t1)
return df1
result = query(bc)
print(result)
Running your code¶
Bringing it all together, the complete code looks like this:
import pandas as pd
import numpy as np
import bodo
import bodosql
import time
NUM_GROUPS = 30
NUM_ROWS = 20_000_000
df = pd.DataFrame({
"A": np.arange(NUM_ROWS) % NUM_GROUPS,
"B": np.arange(NUM_ROWS)
})
df.to_parquet("my_data.pq")
bc = bodosql.BodoSQLContext(
{
"TABLE1": bodosql.TablePath("my_data.pq", "parquet")
}
)
@bodo.jit(cache=True)
def query(bc):
t1 = time.time()
df1 = bc.sql("SELECT SUM(A) as SUM_OF_COLUMN_A FROM TABLE1 WHERE B > 4")
print("Execution time:", time.time() - t1)
return df1
result = query(bc)
print(result)
To run the code, save it to a file, e.g. test_bodo_sql.py
, and run the following command in your terminal:
Replace 8
with the number of cores you want to use. Note that the first time you run this code, it may take a few seconds to compile the code. Next time you run the code, it will execute much faster. Check the SQL API Reference for the full list of supported SQL operations.