sklearn.ensemble¶
sklearn.ensemble.RandomForestClassifier¶
This class provides Random Forest Classifier, an ensemble learning model, for distributed large-scale learning.
Important
random_state
value is ignored when running on a multi-node cluster.
Methods¶
sklearn.ensemble.RandomForestClassifier.fit¶
sklearn.ensemble.RandomForestClassifier. fit (X, y, sample_weight=None)
Supported Arguments
X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix.y
: NumPy Arraysample_weight
: Numeric NumPy Array (only if data is not distributed)
sklearn.ensemble.RandomForestClassifier.predict¶
sklearn.ensemble.RandomForestClassifier. predict (X)
Supported Arguments
X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix.
sklearn.ensemble.RandomForestClassifier.predict_log_proba¶
sklearn.ensemble.RandomForestClassifier. predict_log_proba (X)
Supported Arguments
X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix.
sklearn.ensemble.RandomForestClassifier.predict_proba¶
sklearn.ensemble.RandomForestClassifier. predict_proba (X)
Supported Arguments
X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix.
sklearn.ensemble.RandomForestClassifier.score¶
sklearn.ensemble.RandomForestClassifier. score (X, y, sample_weight=None)
Supported Arguments
X
: NumPy Array or Pandas Dataframes.y
: NumPy Arraysample_weight
: Numeric NumPy Array
Example Usage¶
>>> import bodo
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=1000, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> @bodo.jit
>>> def test_random_forest_classifier(X, y):
... clf = RandomForestClassifier(max_depth=2)
... clf.fit(X, y)
... ans = clf.predict(np.array([[0, 0, 0, 0]]))
... print(ans)
...
>>> test_random_forest_classifier(X, y)
[1]
sklearn.ensemble.RandomForestRegressor¶
This class provides Random Forest Regressor, an ensemble learning
model, for distributed large-scale learning.
Important
random_state
value is ignored when running on a multi-node cluster.
Methods¶
sklearn.ensemble.RandomForestRegressor.fit¶
sklearn.ensemble.RandomForestRegressor. fit (X, y, sample_weight=None)
Supported Arguments
X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix.y
: NumPy Arraysample_weight
: Numeric NumPy Array (only if data is not distributed)
sklearn.ensemble.RandomForestRegressor.predict¶
sklearn.ensemble.RandomForestRegressor. predict (X)
Supported Arguments
X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix.
sklearn.ensemble.RandomForestRegressor.score¶
sklearn.ensemble.RandomForestRegressor. score (X, y, sample_weight=None)
Supported Arguments
X
: NumPy Array, Pandas Dataframes, or CSR sparse matrix.y
: NumPy Arraysample_weight
: Numeric NumPy Array
Example Usage¶
>>> import bodo
>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=4, n_informative=2,
... random_state=0, shuffle=False)
>>> @bodo.jit
>>> def test_random_forest_regressor(X, y):
... regr = RandomForestRegressor(max_depth=2)
... regr.fit(X, y)
... ans = regr.predict(np.array([[0, 0, 0, 0]]))
... print(ans)
...
>>> test_random_forest_regressor(X, y)
[-6.7933243]