sklearn.feature_extraction¶
sklearn.feature_extraction.text.CountVectorizer¶
This class provides CountVectorizer support to convert a collection of text documents to a matrix of token counts.
Note
Arguments max_df
and min_df
are not supported yet.
Methods¶
sklearn.feature_extraction.text.CountVectorizer.fit_transform¶
-
sklearn.feature_extraction.text.CountVectorizer. fit_transform ( raw_documents, y=None )
Supported Arguments
raw_documents
: iterables ( list, tuple, or NumPy Array, or Pandas Series that contains string)
Note
Bodo ignores
y
, which is consistent with scikit-learn.
sklearn.feature_extraction.text.CountVectorizer.get_feature_names_out¶
sklearn.feature_extraction.text.CountVectorizer. get_feature_names_out ()
Example Usage¶
>>> import bodo
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
... ]
>>> @bodo.jit
>>> def test_count_vectorizer(corpus):
>>> vectorizer = CountVectorizer()
>>> X = vectorizer.fit_transform(corpus)
>>> print(vectorizer.get_feature_names_out())
...
>>> test_count_vectorizer(corpus)
['and' 'document' 'first' 'is' 'one' 'second' 'the' 'third' 'this']
sklearn.feature_extraction.text.HashingVectorizer¶
This class provides HashingVectorizer
support to convert a collection
of text documents to a matrix of token occurrences.
Methods¶
sklearn.feature_extraction.text.HashingVectorizer.fit_transform¶
-
sklearn.feature_extraction.text.HashingVectorizer. fit_transform (X, y=None)
Supported Arguments
X
: iterables ( list, tuple, or NumPy Array, or Pandas Series that contains string)
Note
Bodo ignores
y
, which is consistent with scikit-learn.
Example Usage¶
>>> import bodo
>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
... ]
>>> @bodo.jit
>>> def test_hashing_vectorizer(corpus):
>>> vectorizer = HashingVectorizer(n_features=2**4)
>>> X = vectorizer.fit_transform(corpus)
>>> print(X.shape)
...
>>> test_hashing_vectorizer(corpus)
(4, 16)