Skip to content

Python Development Guide

This page provides an introduction to Python programming with Bodo and explains its important concepts briefly.

Installation

We recommend Bodo Platform on AWS or Azure for using Bodo. See how to get started with the Bodo platform. If you prefer a local environment, Conda is the recommended way to install Bodo locally. You can install the Community Edition using conda, which allows you to use Bodo for free on up to 8 cores.

conda create -n Bodo python=3.12 -c conda-forge
conda activate Bodo
conda install bodo -c bodo.ai -c conda-forge

These commands create a conda environment called Bodo and install Bodo Community Edition.

Data Transform Example with Bodo

We use a simple data transformation example to discuss some of the key Bodo concepts.

Generate data

Let's generate some example data and write to a Parquet file:

import pandas as pd
import numpy as np

# 10m data points
df = pd.DataFrame(
    {
        "A": np.repeat(pd.date_range("2013-01-03", periods=1000), 10_000),
        "B": np.arange(10_000_000),
    }
)
# set some values to NA
df.iloc[np.arange(1000) * 3, 0] = pd.NA
# using row_group_size helps with efficient parallel read of data later
df.to_parquet("pd_example.pq", row_group_size=100_000)

Save this code in gen_data.py and run in command line:

python gen_data.py

Example Pandas Code

Here is a simple data transformation code in Pandas that processes a column of datetime values and creates two new columns:

import pandas as pd
import time


def data_transform():
    t0 = time.time()
    df = pd.read_parquet("pd_example.pq")
    df["B"] = df.apply(lambda r: "NA" if pd.isna(r.A) else "P1" if r.A.month < 5 else "P2", axis=1)
    df["C"] = df.A.dt.month
    df.to_parquet("pandas_output.pq")
    print("Total time: {:.2f}".format(time.time() - t0))


if __name__ == "__main__":
    data_transform()

Save this code in data_transform.py and run in command line:

$ python data_transform.py
Total time: 166.18

Standard Python is quite slow for these data transforms since:

  1. The use of custom code inside apply() does not let Pandas run an optimized prebuilt C library in its backend. Therefore, the Python interpreter overheads dominate.
  2. Python uses a single CPU core and does not parallelize computation.

Bodo solves both of these problems as we demonstrate below.

Using the Bodo JIT Decorator

Bodo optimizes and parallelizes data workloads by providing just-in-time (JIT) compilation. This code is identical to the original Pandas code, except that it annotates the data_transform function with the bodo.jit decorator:

import pandas as pd
import time
import bodo

@bodo.jit
def data_transform():
    t0 = time.time()
    df = pd.read_parquet("pd_example.pq")
    df["B"] = df.apply(lambda r: "NA" if pd.isna(r.A) else "P1" if r.A.month < 5 else "P2", axis=1)
    df["C"] = df.A.dt.month
    df.to_parquet("bodo_output.pq")
    print("Total time: {:.2f}".format(time.time()-t0))

if __name__ == "__main__":
    data_transform()

Save this code in bodo_data_transform.py and run on a single core from command line:

$ python bodo_data_transform.py
Total time: 1.78

This code is 94x faster with Bodo than Pandas even on a single core, because Bodo compiles the function into a native binary, eliminating the interpreter overheads in apply.

Now let's run the code on 8 CPU cores using mpiexec in command line:

$ mpiexec -n 8 python bodo_data_transform.py
Total time: 0.38

Using 8 cores gets an additional ~5x speedup. The same program can be scaled to larger datasets and as many cores as necessary in compute clusters and cloud environments (e.g. mpiexec -n 10000 python bodo_data_transform.py).

See the documentation on bodo parallelism basics for more details about Bodo's JIT compilation workflow and parallel computation model.

Compilation Time and Caching

Bodo's JIT workflow compiles the function the first time it is called, but reuses the compiled version for subsequent calls. In the previous code, we added timers inside the function to avoid measuring compilation time. Let's move the timers outside and call the function twice:

import pandas as pd
import time
import bodo

@bodo.jit
def data_transform():
    df = pd.read_parquet("pd_example.pq")
    df["B"] = df.apply(lambda r: "NA" if pd.isna(r.A) else "P1" if r.A.month < 5 else "P2", axis=1)
    df["C"] = df.A.dt.month
    df.to_parquet("bodo_output.pq")

if __name__ == "__main__":
    t0 = time.time()
    data_transform()
    print("Total time first call: {:.2f}".format(time.time()-t0))
    t0 = time.time()
    data_transform()
    print("Total time second call: {:.2f}".format(time.time()-t0))

Save this code in data_transform2.py and run in command line:

$ python data_transform2.py
Total time first call: 4.72
Total time second call: 1.92

The first call is slower due to compilation of the function, but the second call reuses the compiled version and runs faster.

Compilation time can be avoided across program runs by using the cache=True flag:

import pandas as pd
import time
import bodo


@bodo.jit(cache=True)
def data_transform():
    df = pd.read_parquet("pd_example.pq")
    df["B"] = df.apply(lambda r: "NA" if pd.isna(r.A) else "P1" if r.A.month < 5 else "P2", axis=1)
    df["C"] = df.A.dt.month
    df.to_parquet("bodo_output.pq")


if __name__ == "__main__":
    t0 = time.time()
    data_transform()
    print("Total time: {:.2f}".format(time.time() - t0))

Save this code in data_transform_cache.py and run in command line twice:

$ python data_transform_cache.py
Total time: 4.70
$ python data_transform_cache.py
Total time: 1.96

In this case, Bodo saves the compiled version of the function to a file and reuses it in the second run since the code has not changed. We plan to make caching default in the future. See caching for more information.

Parallel Python Processes

Bodo uses the MPI parallelism model, which runs the full program on all cores from the beginning. Essentially, mpiexec launches identical Python processes but Bodo divides the data and computation in JIT functions to exploit parallelism.

Let's try a simple example that demonstrates how chunks of data are loaded in parallel:

import pandas as pd
import bodo


def load_data_pandas():
    df = pd.read_parquet("pd_example.pq")
    print("pandas dataframe: ", df)


@bodo.jit
def load_data_bodo():
    df = pd.read_parquet("pd_example.pq")
    print("Bodo dataframe: ", df)


if __name__ == "__main__":
    load_data_pandas()
    load_data_bodo()

Save this code in load_data.py and run on two cores (output prints of the cores are mixed):

Click to expand output
$ mpiexec -n 2 python load_data.py
pandas dataframe:
                 A        B
0              NaT        0
1       2013-01-03        1
2       2013-01-03        2
3              NaT        3
4       2013-01-03        4
...            ...      ...
9999995 2015-09-29  9999995
9999996 2015-09-29  9999996
9999997 2015-09-29  9999997
9999998 2015-09-29  9999998
9999999 2015-09-29  9999999

[10000000 rows x 2 columns]

pandas dataframe:
                 A        B
0              NaT        0
1       2013-01-03        1
2       2013-01-03        2
3              NaT        3
4       2013-01-03        4
...            ...      ...
9999995 2015-09-29  9999995
9999996 2015-09-29  9999996
9999997 2015-09-29  9999997
9999998 2015-09-29  9999998
9999999 2015-09-29  9999999

[10000000 rows x 2 columns]

Bodo dataframe:
                 A        B
0       1970-01-01        0
1       2013-01-03        1
2       2013-01-03        2
3       2013-01-03        3
4       2013-01-03        4
...            ...      ...
4999995 2014-05-17  4999995
4999996 2014-05-17  4999996
4999997 2014-05-17  4999997
4999998 2014-05-17  4999998
4999999 2014-05-17  4999999

[5000000 rows x 2 columns]

pandas dataframe:
                 A        B
5000000 2014-05-18  5000000
5000001 2014-05-18  5000001
5000002 2014-05-18  5000002
5000003 2014-05-18  5000003
5000004 2014-05-18  5000004
...            ...      ...
9999995 2015-09-29  9999995
9999996 2015-09-29  9999996
9999997 2015-09-29  9999997
9999998 2015-09-29  9999998
9999999 2015-09-29  9999999

[5000000 rows x 2 columns]

The first two dataframes printed are regular Pandas dataframes which are replicated on both processes and have all 10 million rows. However, the last two dataframes printed are Bodo parallelized Pandas dataframes, with 5 million rows each. In this case, Bodo parallelizes read_parquet automatically and loads different chunks of data in different cores. Therefore, the non-JIT parts of the Python program are replicated across cores whereas Bodo JIT functions are parallelized.

Parallel Computation

Bodo automatically divides computation and manages communication across cores as this example demonstrates:

import pandas as pd
import bodo


@bodo.jit
def data_groupby():
    df = pd.read_parquet("pd_example.pq")
    df2 = df.groupby("A", as_index=False).sum()
    df2.to_parquet("bodo_output.pq")


if __name__ == "__main__":
    data_groupby()

Save this code as data_groupby.py and run from command line:

$ mpiexec -n 8 python data_groupby.py

This program uses groupby which requires rows with the same key to be aggregated together. Therefore, Bodo shuffles the data automatically under the hoods using MPI, and the user doesn't need to worry about parallelism challenges like communication.


parallel processes

Bodo JIT Requirements

To take advantage of the Bodo JIT compiler and avoid errors, make sure only compute and data-intensive code is in JIT functions. Other Python code for setup and configuration should run in regular Python. For example, consider this simple script:

import os
import pandas as pd

data_path = os.environ["JOB_DATA_PATH"]

df = pd.read_parquet(data_path)
print(df.A.sum())

The Bodo version performs the computation in JIT functions, but keeps the setup code (finding data_path) in regular Python:

import os
import pandas as pd
import bodo

data_path = os.environ["JOB_DATA_PATH"]

@bodo.jit
def f(path):
    df = pd.read_parquet(path)
    print(df.A.sum())

f(data_path)

In addition, the Bodo version passes the file path data_path as an argument to the JIT function f, allowing Bodo to find the input dataframe schema which is necessary for type inference (more in Scalable Data I/O).

Bodo JIT supports specific APIs in Pandas currently, and other APIs cannot be used inside JIT functions. For example:

import pandas as pd
import bodo


@bodo.jit
def df_unsupported():
    df = pd.DataFrame({"A": [1, 2, 3]})
    df2 = df.transpose()
    return df2


if __name__ == "__main__":
    df_unsupported()

Save this code as df_unsupported.py and run from command line:

$ python df_unsupported.py
# bodo.utils.typing.BodoError: Dataframe.transpose not supported yet

As the error indicates, Bodo doesn't currently support the transpose call in JIT functions. In these cases, an alternative API should be used or this portion of the code should be either be in regular Python or in Bodo's Object Mode. See supported Pandas API for the complete list of supported Pandas operations.

Type Stability

The main requirement of JIT compilation is being able to infer data types for all variables and values. In Bodo, column names are part of dataframe data types, so Bodo tries to infer column name related inputs in all operations. For example, key names in groupby are used to determine the output data type and need to be known to Bodo:

import pandas as pd
import bodo


@bodo.jit
def groupby_keys(extra_keys):
    df = pd.read_parquet("pd_example.pq")
    keys = [c for c in df.columns if c not in ["B", "C"]]
    if extra_keys:
        keys.append("B")
    df2 = df.groupby(keys).sum()
    print(df2)


if __name__ == "__main__":
    groupby_keys(False)

Save this code as groupby_keys.py and run from command line:

$ python groupby_keys.py
# bodo.utils.typing.BodoError: groupby(): argument 'by' requires a constant value but variable 'keys' is updated inplace using 'append'

In this case, the list of groupby keys is determined using the runtime value of extra_keys in a way that Bodo is not able to infer it from the program during compilation time. The alternative is to compute the keys in a separate JIT function to make it easier for Bodo to infer:

import pandas as pd
import bodo


@bodo.jit
def get_keys(df_columns, extra_keys):
    keys = [c for c in df_columns if c not in ["B", "C"]]
    if extra_keys:
        keys.append("B")
    return keys


@bodo.jit
def groupby_keys(extra_keys):
    df = pd.read_parquet("pd_example.pq")
    keys = get_keys(df.columns, extra_keys)
    df2 = df.groupby(keys).sum()
    print(df2)


if __name__ == "__main__":
    keys = get_keys(["A"], False)
    groupby_keys(False)

This program works since get_keys can be evaluated in compile time. It only uses df.columns and extra_keys values that can be constant at compile time, and does not use non-deterministic features like I/O.

Python Features

Bodo uses Numba for compiling regular Python features and some of Numba's requirements apply to Bodo as well. For example, values in data structures like lists should have the same data type. This example fails since list values are either integers or strings:

import bodo


@bodo.jit
def create_list():
    out = []
    out.append(0)
    out.append("A")
    out.append(1)
    out.append("B")
    return out


if __name__ == "__main__":
    create_list()

Using tuples can often solve these problems since tuples can hold values of different types:

import bodo


@bodo.jit
def create_list():
    out = []
    out.append((0, "A"))
    out.append((1, "B"))
    return out


if __name__ == "__main__":
    create_list()

Please refer to the Unsupported Python Programs documentation for more details.

Using Bodo in Jupyter Notebooks

See Interactive Bodo Cluster Setup using IPyParallel for more information.